Characterization of classical graph classes by weighted clique graphs
نویسندگان
چکیده
Given integers m1, . . . ,ml, the weighted clique graph of G is the clique graph K(G), in which there is a weight assigned to each complete set S of size mi of K(G), for each i = 1, . . . , l. This weight equals the cardinality of the intersection of the cliques of G corresponding to S. We characterize weighted clique graphs in similar terms as Roberts and Spencer’s characterization of clique graphs. Further we characterize several classical graph classes in terms of their weighted clique graphs, providing a common framework for describing some different well-known classes of graphs, as hereditary clique-Helly graphs, split graphs, chordal graphs, interval graphs, proper interval graphs, line graphs, among others.
منابع مشابه
On weighted clique graphs
Let K(G) be the clique graph of a graph G. A m-weighting of K(G) consists on giving to each m-size subset of its vertices a weight equal to the size of the intersection of the m corresponding cliques of G. The 2weighted clique graph was previously considered by McKee. In this work we obtain a characterization of weighted clique graphs similar to Roberts and Spencer’s characterization for clique...
متن کاملON NEW CLASSES OF MULTICONE GRAPHS DETERMINED BY THEIR SPECTRUMS
A multicone graph is defined to be join of a clique and a regular graph. A graph $ G $ is cospectral with graph $ H $ if their adjacency matrices have the same eigenvalues. A graph $ G $ is said to be determined by its spectrum or DS for short, if for any graph $ H $ with $ Spec(G)=Spec(H)$, we conclude that $ G $ is isomorphic to $ H $. In this paper, we present new classes of multicone graphs...
متن کاملVertex Decomposable Simplicial Complexes Associated to Path Graphs
Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...
متن کاملIntersection graphs associated with semigroup acts
The intersection graph $mathbb{Int}(A)$ of an $S$-act $A$ over a semigroup $S$ is an undirected simple graph whose vertices are non-trivial subacts of $A$, and two distinct vertices are adjacent if and only if they have a non-empty intersection. In this paper, we study some graph-theoretic properties of $mathbb{Int}(A)$ in connection to some algebraic properties of $A$. It is proved that the fi...
متن کاملPartial characterizations of clique-perfect graphs II: Diamond-free and Helly circular-arc graphs
A clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. A graph G is clique-perfect if the sizes of a minimum clique-transversal and a maximum clique-independent set are equal for every induced subgraph ofG. The list of minimal forbidden induced subgraphs for the class of clique-perf...
متن کامل